Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 92
1.
PNAS Nexus ; 3(5): pgae179, 2024 May.
Article En | MEDLINE | ID: mdl-38737767

Despite the success of combination antiretroviral therapy (ART) for individuals living with HIV, mild forms of HIV-associated neurocognitive disorder (HAND) continue to occur. Brain microglia form the principal target for HIV infection in the brain. It remains unknown how infection of these cells leads to neuroinflammation, neuronal dysfunction, and/or death observed in HAND. Utilizing two different inducible pluripotent stem cell-derived brain organoid models (cerebral and choroid plexus [ChP] organoids) containing microglia, we investigated the pathogenic changes associated with HIV infection. Infection of microglia was associated with a sharp increase in CCL2 and CXCL10 chemokine gene expression and the activation of many type I interferon stimulated genes (MX1, ISG15, ISG20, IFI27, IFITM3 and others). Production of the proinflammatory chemokines persisted at low levels after treatment of the cell cultures with ART, consistent with the persistence of mild HAND following clinical introduction of ART. Expression of multiple members of the S100 family of inflammatory genes sharply increased following HIV infection of microglia measured by single-cell RNA-seq. However, S100 gene expression was not limited to microglia but was also detected more broadly in uninfected stromal cells, mature and immature ChP cells, neural progenitor cells and importantly in bystander neurons suggesting propagation of the inflammatory response to bystander cells. Neurotransmitter transporter expression declined in uninfected neurons, accompanied by increased expression of genes promoting cellular senescence and cell death. Together, these studies underscore how an inflammatory response generated in HIV-infected microglia is propagated to multiple uninfected bystander cells ultimately resulting in the dysfunction and death of bystander neurons.

2.
Nat Commun ; 15(1): 3035, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600088

People living with HIV (PLWH) experience increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors associated with this vulnerability remain uncertain. In the general population, alterations in the N-glycans on IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG N-glycans in cross-sectional and longitudinal samples from 1214 women and men, living with and without HIV. PLWH exhibit an accelerated accumulation of pro-aging-associated glycan alterations and heightened expression of senescence-associated glycan-degrading enzymes compared to controls. These alterations correlate with elevated markers of inflammation and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit a reduced ability to elicit anti-HIV Fc-mediated immune activities. These findings hold potential for the development of biomarkers and tools to identify and prevent premature aging and comorbidities in PLWH.


Aging, Premature , HIV Infections , Male , Humans , Female , Immunoglobulin G , Cross-Sectional Studies , Aging , Inflammation/complications , Polysaccharides
3.
Semin Immunol ; 72: 101873, 2024 Mar.
Article En | MEDLINE | ID: mdl-38460395

Since the onset of the COVID-19 pandemic, significant progress has been made in developing effective preventive and therapeutic strategies against severe acute SARS-CoV-2 infection. However, the management of Long COVID (LC), an infection-associated chronic condition that has been estimated to affect 5-20% of individuals following SARS-CoV-2 infection, remains challenging due to our limited understanding of its mechanisms. Although LC is a heterogeneous disease that is likely to have several subtypes, immune system disturbances appear common across many cases. The extent to which these immune perturbations contribute to LC symptoms, however, is not entirely clear. Recent advancements in multi-omics technologies, capable of detailed, cell-level analysis, have provided valuable insights into the immune perturbations associated with LC. Although these studies are largely descriptive in nature, they are the crucial first step towards a deeper understanding of the condition and the immune system's role in its development, progression, and resolution. In this review, we summarize the current understanding of immune perturbations in LC, covering both innate and adaptive immune responses, and the cytokines and analytes involved. We explore whether these findings support or challenge the primary hypotheses about LC's underlying mechanisms. We also discuss the crosstalk between various immune system components and how it can be disrupted in LC. Finally, we emphasize the need for more tissue- and subtype-focused analyses of LC, and for enhanced collaborative efforts to analyze common specimens from large cohorts, including those undergoing therapeutic interventions. These collective efforts are vital to unravel the fundaments of this new disease, and could also shed light on the prevention and treatment of the larger family of chronic illnesses linked to other microbial infections.


COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Pandemics , SARS-CoV-2 , Adaptive Immunity , Systems Analysis , Immunity, Innate
4.
medRxiv ; 2024 Feb 15.
Article En | MEDLINE | ID: mdl-38405967

The latent reservoir of HIV persists for decades in people living with HIV (PWH) on antiretroviral therapy (ART). To determine if persistence arises from the natural dynamics of memory CD4+ T cells harboring HIV, we compared the clonal dynamics of HIV proviruses to that of memory CD4+ T cell receptors (TCRß) from the same PWH and from HIV-seronegative people. We show that clonal dominance of HIV proviruses and antigen-specific CD4+ T cells are similar but that the field's understanding of the persistence of the less clonally dominant reservoir is significantly limited by undersampling. We demonstrate that increasing reservoir clonality over time and differential decay of intact and defective proviruses cannot be explained by mCD4+ T cell kinetics alone. Finally, we develop a stochastic model of TCRß and proviruses that recapitulates experimental observations and suggests that HIV-specific negative selection mediates approximately 6% of intact and 2% of defective proviral clearance. Thus, HIV persistence is mostly, but not entirely, driven by natural mCD4+ T cell kinetics.

5.
Nat Immunol ; 25(2): 218-225, 2024 Feb.
Article En | MEDLINE | ID: mdl-38212464

Long COVID (LC) occurs after at least 10% of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, yet its etiology remains poorly understood. We used 'omic" assays and serology to deeply characterize the global and SARS-CoV-2-specific immunity in the blood of individuals with clear LC and non-LC clinical trajectories, 8 months postinfection. We found that LC individuals exhibited systemic inflammation and immune dysregulation. This was evidenced by global differences in T cell subset distribution implying ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. LC individuals displayed increased frequencies of CD4+ T cells poised to migrate to inflamed tissues and exhausted SARS-CoV-2-specific CD8+ T cells, higher levels of SARS-CoV-2 antibodies and a mis-coordination between their SARS-CoV-2-specific T and B cell responses. Our analysis suggested an improper crosstalk between the cellular and humoral adaptive immunity in LC, which can lead to immune dysregulation, inflammation and clinical symptoms associated with this debilitating condition.


COVID-19 , SARS-CoV-2 , Female , Male , Humans , Post-Acute COVID-19 Syndrome , CD8-Positive T-Lymphocytes , Immunity, Humoral , Antibodies, Viral , Inflammation
6.
Cell Rep ; 42(11): 113285, 2023 11 28.
Article En | MEDLINE | ID: mdl-37910505

Deciphering the mechanisms underlying viral persistence is critical to achieving a cure for human immunodeficiency virus (HIV) infection. Here, we implement a systems approach to discover molecular signatures of HIV latently infected CD4+ T cells, identifying the immunosuppressive, adenosine-producing ectonucleotidase CD73 as a key surface marker of latent cells. Hypoxic conditioning, reflecting the lymphoid tissue microenvironment, increases the frequency of CD73+ CD4+ T cells and promotes HIV latency. Transcriptomic profiles of CD73+ CD4+ T cells favor viral quiescence, immune evasion, and cell survival. CD73+ CD4+ T cells are capable of harboring a functional HIV reservoir and reinitiating productive infection ex vivo. CD73 or adenosine receptor blockade facilitates latent HIV reactivation in vitro, mechanistically linking adenosine signaling to viral quiescence. Finally, tissue imaging of lymph nodes from HIV-infected individuals on antiretroviral therapy reveals spatial association between CD73 expression and HIV persistence in vivo. Our findings warrant development of HIV-cure strategies targeting the hypoxia-CD73-adenosine axis.


HIV Infections , HIV-1 , Humans , Adenosine/metabolism , CD4-Positive T-Lymphocytes , Virus Activation , Virus Latency/physiology , Virus Replication/physiology
7.
Viruses ; 15(11)2023 Oct 28.
Article En | MEDLINE | ID: mdl-38005849

Despite remarkable progress, a cure for HIV-1 infection remains elusive. Rebound competent latent and transcriptionally active reservoir cells persevere despite antiretroviral therapy and rekindle infection due to inefficient proviral silencing. We propose a novel "block-lock-stop" approach, entailing long term durable silencing of viral expression towards an irreversible transcriptionally inactive latent provirus to achieve long term antiretroviral free control of the virus. A graded transformation of remnant HIV-1 in PLWH from persistent into silent to permanently defective proviruses is proposed, emulating and accelerating the natural path that human endogenous retroviruses (HERVs) take over millions of years. This hypothesis was based on research into delineating the mechanisms of HIV-1 latency, lessons from latency reversing agents and advances of Tat inhibitors, as well as expertise in the biology of HERVs. Insights from elite controllers and the availability of advanced genome engineering technologies for the direct excision of remnant virus set the stage for a rapid path to an HIV-1 cure.


Endogenous Retroviruses , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Virus Latency , Proviruses/genetics , HIV Seropositivity/genetics , CD4-Positive T-Lymphocytes
8.
bioRxiv ; 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37609144

People with HIV (PWH) experience an increased vulnerability to premature aging and inflammation-associated comorbidities, even when HIV replication is suppressed by antiretroviral therapy (ART). However, the factors that contribute to or are associated with this vulnerability remain uncertain. In the general population, alterations in the glycomes of circulating IgGs trigger inflammation and precede the onset of aging-associated diseases. Here, we investigate the IgG glycomes of cross-sectional and longitudinal samples from 1,216 women and men, both living with virally suppressed HIV and those without HIV. Our glycan-based machine learning models indicate that living with chronic HIV significantly accelerates the accumulation of pro-aging-associated glycomic alterations. Consistently, PWH exhibit heightened expression of senescence-associated glycan-degrading enzymes compared to their controls. These glycomic alterations correlate with elevated markers of inflammatory aging and the severity of comorbidities, potentially preceding the development of such comorbidities. Mechanistically, HIV-specific antibodies glycoengineered with these alterations exhibit reduced anti-HIV IgG-mediated innate immune functions. These findings hold significant potential for the development of glycomic-based biomarkers and tools to identify and prevent premature aging and comorbidities in people living with chronic viral infections.

9.
bioRxiv ; 2023 Oct 04.
Article En | MEDLINE | ID: mdl-37333294

Progress in understanding long COVID and developing effective therapeutics is hampered in part by the lack of suitable animal models. Here we used ACE2-transgenic mice recovered from Omicron (BA.1) infection to test for pulmonary and behavioral post-acute sequelae. Through in-depth phenotyping by CyTOF, we demonstrate that naïve mice experiencing a first Omicron infection exhibit profound immune perturbations in the lung after resolving acute infection. This is not observed if mice were first vaccinated with spike-encoding mRNA. The protective effects of vaccination against post-acute sequelae were associated with a highly polyfunctional SARS-CoV-2-specific T cell response that was recalled upon BA.1 breakthrough infection but not seen with BA.1 infection alone. Without vaccination, the chemokine receptor CXCR4 was uniquely upregulated on multiple pulmonary immune subsets in the BA.1 convalescent mice, a process previously connected to severe COVID-19. Taking advantage of recent developments in machine learning and computer vision, we demonstrate that BA.1 convalescent mice exhibited spontaneous behavioral changes, emotional alterations, and cognitive-related deficits in context habituation. Collectively, our data identify immunological and behavioral post-acute sequelae after Omicron infection and uncover a protective effect of vaccination against post-acute pulmonary immune perturbations.

10.
bioRxiv ; 2023 Aug 04.
Article En | MEDLINE | ID: mdl-36798286

Long COVID (LC), a type of post-acute sequelae of SARS-CoV-2 infection (PASC), occurs after at least 10% of SARS-CoV-2 infections, yet its etiology remains poorly understood. Here, we used multiple "omics" assays (CyTOF, RNAseq/scRNAseq, Olink) and serology to deeply characterize both global and SARS-CoV-2-specific immunity from blood of individuals with clear LC and non-LC clinical trajectories, 8 months following infection and prior to receipt of any SARS-CoV-2 vaccine. Our analysis focused on deep phenotyping of T cells, which play important roles in immunity against SARS-CoV-2 yet may also contribute to COVID-19 pathogenesis. Our findings demonstrate that individuals with LC exhibit systemic inflammation and immune dysregulation. This is evidenced by global differences in T cell subset distribution in ways that imply ongoing immune responses, as well as by sex-specific perturbations in cytolytic subsets. Individuals with LC harbored increased frequencies of CD4+ T cells poised to migrate to inflamed tissues, and exhausted SARS-CoV-2-specific CD8+ T cells. They also harbored significantly higher levels of SARS-CoV-2 antibodies, and in contrast to non-LC individuals, exhibited a mis-coordination between their SARS-CoV-2-specific T and B cell responses. RNAseq/scRNAseq and Olink analyses similarly revealed immune dysregulatory mechanisms, along with non-immune associated perturbations, in individuals with LC. Collectively, our data suggest that proper crosstalk between the humoral and cellular arms of adaptive immunity has broken down in LC, and that this, perhaps in the context of persistent virus, leads to the immune dysregulation, inflammation, and clinical symptoms associated with this debilitating condition.

11.
Curr HIV/AIDS Rep ; 20(2): 76-85, 2023 04.
Article En | MEDLINE | ID: mdl-36689119

PURPOSE OF REVIEW: This review describes how advances in CyTOF and high-dimensional analysis methods have furthered our understanding of HIV transmission, pathogenesis, persistence, and immunity. RECENT FINDINGS: CyTOF has generated important insight on several aspects of HIV biology: (1) the differences between cells permissive to productive vs. latent HIV infection, and the HIV-induced remodeling of infected cells; (2) factors that contribute to the persistence of the long-term HIV reservoir, in both blood and tissues; and (3) the impact of HIV on the immune system, in the context of both uncontrolled and controlled infection. CyTOF and high-dimensional analysis tools have enabled in-depth assessment of specific host antigens remodeled by HIV, and have revealed insights into the features of HIV-infected cells enabling them to survive and persist, and of the immune cells that can respond to and potentially control HIV replication. CyTOF and other related high-dimensional phenotyping approaches remain powerful tools for translational research, and applied HIV to cohort studies can inform on mechanisms of HIV pathogenesis and persistence, and potentially identify biomarkers for viral eradication or control.


HIV Infections , Humans , CD4-Positive T-Lymphocytes , Virus Latency , Virus Replication
12.
mBio ; 13(6): e0230822, 2022 12 20.
Article En | MEDLINE | ID: mdl-36314791

Coronavirus disease 2019 (COVID-19) is frequently associated with neurological deficits, but how severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces these effects remains unclear. Here, we show that astrocytes are readily infected by SARS-CoV-2, but surprisingly, neuropilin-1, not angiotensin-converting enzyme 2 (ACE2), serves as the principal receptor mediating cell entry. Infection is further positively modulated by the two-pore segment channel 2 (TPC2) protein that regulates membrane trafficking and endocytosis. Astrocyte infection produces a pathological response closely resembling reactive astrogliosis characterized by elevated type I interferon (IFN) production, increased inflammation, and the decreased expression of transporters of water, ions, choline, and neurotransmitters. These combined events initiated within astrocytes produce a hostile microenvironment that promotes the dysfunction and death of uninfected bystander neurons. IMPORTANCE SARS-CoV-2 infection primarily targets the lung but may also damage other organs, including the brain, heart, kidney, and intestine. Central nervous system (CNS) pathologies include loss of smell and taste, headache, delirium, acute psychosis, seizures, and stroke. Pathological loss of gray matter occurs in SARS-CoV-2 infection, but it is unclear whether this is due to direct viral infection, indirect effects associated with systemic inflammation, or both. Here, we used induced pluripotent stem cell (iPSC)-derived brain organoids and primary human astrocytes from the cerebral cortex to study direct SARS-CoV-2 infection. Our findings support a model where SARS-CoV-2 infection of astrocytes produces a panoply of changes in the expression of genes regulating innate immune signaling and inflammatory responses. The deregulation of these genes in astrocytes produces a microenvironment within the CNS that ultimately disrupts normal neuron function, promoting neuronal cell death and CNS deficits.


COVID-19 , Humans , SARS-CoV-2/physiology , Astrocytes , Neuropilin-1 , Brain , Inflammation , Neurons , Organoids
13.
mBio ; 13(5): e0189122, 2022 10 26.
Article En | MEDLINE | ID: mdl-36073812

HIV infects long-lived CD4 memory T cells, establishing a latent viral reservoir that necessitates lifelong antiretroviral therapy (ART). How this reservoir is formed so quickly after infection remains unclear. We now show the innate inflammatory response to HIV infection results in CCL2 chemokine release, leading to recruitment of cells expressing the CCR2 receptor, including a subset of central memory CD4 T cells. Supporting a role for the CCL2/CCR2 axis in rapid reservoir formation, we find (i) treatment of humanized mice with anti-CCL2 antibodies during early HIV infection decreases reservoir seeding and preserves CCR2/5+ cells and (ii) CCR2/5+ cells from the blood of HIV-infected individuals on long-term ART contain significantly more integrated provirus than CCR2/5-negative memory or naive cells. Together, these studies support a model where the host's innate inflammatory response to HIV infection, including CCL2 production, leads to the recruitment of CCR2/5+ central memory CD4 T cells to zones of virus-associated inflammation, likely contributing to rapid formation of the latent HIV reservoir. IMPORTANCE There are currently over 35 million people living with HIV worldwide, and we still have no vaccine or scalable cure. One of the difficulties with HIV is its ability to rapidly establish a viral reservoir in lymphoid tissues that allows it to elude antivirals and the immune system. Thus, it is important to understand how HIV accomplishes this so we can develop preventive strategies. Our current results show that an early inflammatory response to HIV infection includes production of the chemokine CCL2, which recruits a unique subset of CCR2/5+ CD4+ T cells that become infected and form a significant reservoir for latent infection. Furthermore, we show that blockade of CCL2 in humanized mice significantly reduces persistent HIV infection. This information is relevant to the development of therapeutics to prevent and/or treat chronic HIV infections.


HIV Infections , HIV-1 , Animals , Mice , Virus Latency/physiology , HIV-1/physiology , Chemokine CCL2 , Receptors, CCR2 , Virus Replication , CD4-Positive T-Lymphocytes , Antiviral Agents/therapeutic use , Chemokines , Inflammation
14.
Viruses ; 14(8)2022 08 04.
Article En | MEDLINE | ID: mdl-36016345

The efficacy of HIV pre-exposure prophylaxis (PrEP) is high in men who have sex with men, but much more variable in women, in a manner largely attributed to low adherence. This reduced efficacy, however, could also reflect biological factors. Transmission to women is typically via the female reproductive tract (FRT), and vaginal dysbiosis, genital inflammation, and other factors specific to the FRT mucosa can all increase transmission risk. We have demonstrated that mucosal fibroblasts from the lower and upper FRT can markedly enhance HIV infection of CD4+ T cells. Given the current testing of tenofovir disoproxil fumarate, cabotegravir, and dapivirine regimens as candidate PrEP agents for women, we set out to determine using in vitro assays whether endometrial stromal fibroblasts (eSF) isolated from the FRT can affect the anti-HIV activity of these PrEP drugs. We found that PrEP drugs exhibit significantly reduced antiviral efficacy in the presence of eSFs, not because of decreased PrEP drug availability, but rather of eSF-mediated enhancement of HIV infection. These findings suggest that drug combinations that target both the virus and infection-promoting factors in the FRT-such as mucosal fibroblasts-may be more effective than PrEP alone at preventing sexual transmission of HIV to women.


Anti-HIV Agents , HIV Infections , Sexual and Gender Minorities , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Female , Fibroblasts , HIV Infections/drug therapy , HIV Infections/prevention & control , Homosexuality, Male , Humans , Male , Vagina
15.
PLoS One ; 17(8): e0273430, 2022.
Article En | MEDLINE | ID: mdl-36037222

The COVID-19 pandemic has been fueled by SARS-CoV-2 novel variants of concern (VOC) that have increased transmissibility, receptor binding affinity, and other properties that enhance disease. The goal of this study is to characterize unique pathogenesis of the Delta VOC strain in the K18-hACE2-mouse challenge model. Challenge studies suggested that the lethal dose of Delta was higher than Alpha or Beta strains. To characterize the differences in the Delta strain's pathogenesis, a time-course experiment was performed to evaluate the overall host response to Alpha or Delta variant challenge. qRT-PCR analysis of Alpha- or Delta-challenged mice revealed no significant difference between viral RNA burden in the lung, nasal wash or brain. However, histopathological analysis revealed high lung tissue inflammation and cell infiltration following Delta- but not Alpha-challenge at day 6. Additionally, pro-inflammatory cytokines were highest at day 6 in Delta-challenged mice suggesting enhanced pneumonia. Total RNA-sequencing analysis of lungs comparing challenged to no challenge mice revealed that Alpha-challenged mice have more total genes differentially activated. Conversely, Delta-challenged mice have a higher magnitude of differential gene expression. Delta-challenged mice have increased interferon-dependent gene expression and IFN-γ production compared to Alpha. Analysis of TCR clonotypes suggested that Delta challenged mice have increased T-cell infiltration compared to Alpha challenged. Our data suggest that Delta has evolved to engage interferon responses in a manner that may enhance pathogenesis. The in vivo and in silico observations of this study underscore the need to conduct experiments with VOC strains to best model COVID-19 when evaluating therapeutics and vaccines.


COVID-19 , Pneumonia , Animals , Antiviral Agents , COVID-19/genetics , Disease Models, Animal , Humans , Interferons , Melphalan , Mice , Mice, Transgenic , Pandemics , SARS-CoV-2 , gamma-Globulins
16.
Front Immunol ; 13: 883420, 2022.
Article En | MEDLINE | ID: mdl-35784348

CD4 T lymphocytes belong to diverse cellular subsets whose sensitivity or resistance to HIV-associated killing remains to be defined. Working with lymphoid cells from human tonsils, we characterized the HIV-associated depletion of various CD4 T cell subsets using mass cytometry and single-cell RNA-seq. CD4 T cell subsets preferentially killed by HIV are phenotypically distinct from those resistant to HIV-associated cell death, in a manner not fully accounted for by their susceptibility to productive infection. Preferentially-killed subsets express CXCR5 and CXCR4 while preferentially-infected subsets exhibit an activated and exhausted effector memory cell phenotype. Single-cell RNA-seq analysis reveals that the subsets of preferentially-killed cells express genes favoring abortive infection and pyroptosis. These studies emphasize a complex interplay between HIV and distinct tissue-based CD4 T cell subsets, and the important contribution of abortive infection and inflammatory programmed cell death to the overall depletion of CD4 T cells that accompanies untreated HIV infection.


HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , HIV-1/physiology , Humans , RNA-Seq , T-Lymphocyte Subsets
17.
Elife ; 112022 07 05.
Article En | MEDLINE | ID: mdl-35787792

High-parameter single-cell phenotyping has enabled in-depth classification and interrogation of immune cells, but to date has not allowed for glycan characterization. Here, we develop CyTOF-Lec as an approach to simultaneously characterize many protein and glycan features of human immune cells at the single-cell level. We implemented CyTOF-Lec to compare glycan features between different immune subsets from blood and multiple tissue compartments, and to characterize HIV-infected cell cultures. Using bioinformatics approaches to distinguish preferential infection of cellular subsets from viral-induced remodeling, we demonstrate that HIV upregulates the levels of cell-surface fucose and sialic acid in a cell-intrinsic manner, and that memory CD4+ T cells co-expressing high levels of fucose and sialic acid are highly susceptible to HIV infection. Sialic acid levels were found to distinguish memory CD4+ T cell subsets expressing different amounts of viral entry receptors, pro-survival factors, homing receptors, and activation markers, and to play a direct role in memory CD4+ T cells' susceptibility to HIV infection. The ability of sialic acid to distinguish memory CD4+ T cells with different susceptibilities to HIV infection was experimentally validated through sorting experiments. Together, these results suggest that HIV remodels not only cellular proteins but also glycans, and that glycan expression can differentiate memory CD4+ T cells with vastly different susceptibility to HIV infection.


Living cells have a sugar coating. These sugars include molecules called glycans, which help cells interact with the outside world. The types of sugars on cells can affect their properties, including potentially their susceptibility to infection by viruses, such as the human immunodeficiency virus, HIV. To date, most research examining cells susceptible to HIV has focused on cell surface proteins, not sugars. To study these proteins, researchers had previously covered them in metal-studded antibodies (which stick to proteins) and used a technique called cytometry time of flight, or CyTOF for short, to quantify the levels of these proteins on the surface of cells susceptible to HIV. Adapting this tool to investigate sugars could answer questions about HIV infection. For example, does the virus prefer to infect cells coated in certain sugar molecules? And does it change the pattern of sugars on the surface of the cells it infects? Ma et al. adapted CyTOF to use molecules called lectins (which stick to sugars) in conjunction with the metal-studded antibodies. This made it possible to simultaneously measure the levels of 34 different proteins and 5 different types of sugars on individual cells. The pattern of sugars on the surface of cells from the immune system differed depending on what tissues the cells came from, and what types of cells they were. The results showed that HIV preferred to infect memory CD4 T cells with high levels of two types of sugar: fucose and sialic acid. Furthermore, during infection, the levels of both these sugars increased. Current treatments for HIV keep virus levels low but do not cure the infection. Further research could determine whether sugars have a role to play in HIV persistence. It is possible that the sugar patterns preferred by the virus help it to avoid detection. A clearer understanding of cell surface sugars could lead to sugar-targeting drugs that kill infected cells.


HIV Infections , HIV-1 , CD4-Positive T-Lymphocytes , Disease Susceptibility , Fucose , Glycomics , HIV-1/physiology , Humans , N-Acetylneuraminic Acid , Polysaccharides
18.
Nature ; 607(7918): 351-355, 2022 07.
Article En | MEDLINE | ID: mdl-35584773

SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals1,2. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.


COVID-19 , Cross Protection , SARS-CoV-2 , Vaccination , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Cross Protection/immunology , Cytokines , Humans , Mice , SARS-CoV-2/classification , SARS-CoV-2/immunology , Vaccination/statistics & numerical data
19.
BMC Med ; 20(1): 158, 2022 04 15.
Article En | MEDLINE | ID: mdl-35421980

BACKGROUND: Endometriosis is a chronic, estrogen-dependent disorder where inflammation contributes to disease-associated symptoms of pelvic pain and infertility. Immune dysfunction includes insufficient immune lesion clearance, a pro-inflammatory endometrial environment, and systemic inflammation. Comprehensive understanding of endometriosis immune pathophysiology in different hormonal milieu and disease severity has been hampered by limited direct characterization of immune populations in endometrium, blood, and lesions. Simultaneous deep phenotyping at single-cell resolution of complex tissues has transformed our understanding of the immune system and its role in many diseases. Herein, we report mass cytometry and high dimensional analyses to study immune cell phenotypes, abundance, activation states, and functions in endometrium and blood of women with and without endometriosis in different cycle phases and disease stages. METHODS: A case-control study was designed. Endometrial biopsies and blood (n = 60 total) were obtained from women with (n = 20, n = 17, respectively) and without (n = 14, n = 9) endometriosis in the proliferative and secretory cycle phases of the menstrual cycle. Two mass cytometry panels were designed: one broad panel and one specific for mononuclear phagocytic cells (MPC), and all samples were multiplexed to characterize both endometrium and blood immune composition at unprecedented resolution. We combined supervised and unsupervised analyses to finely define the immune cell subsets with an emphasis on MPC. Then, association between cell types, protein expression, disease status, and cycle phase were performed. RESULTS: The broad panel highlighted a significant modification of MPC in endometriosis; thus, they were studied in detail with an MPC-focused panel. Endometrial CD91+ macrophages overexpressed SIRPα (phagocytosis inhibitor) and CD64 (associated with inflammation) in endometriosis, and they were more abundant in mild versus severe disease. In blood, classical and intermediate monocytes were less abundant in endometriosis, whereas plasmacytoid dendritic cells and non-classical monocytes were more abundant. Non-classical monocytes were higher in severe versus mild disease. CONCLUSIONS: A greater inflammatory phenotype and decreased phagocytic capacity of endometrial macrophages in endometriosis are consistent with defective clearance of endometrial cells shed during menses and in tissue homeostasis, with implications in endometriosis pathogenesis and pathophysiology. Different proportions of monocytes and plasmacytoid dendritic cells in blood from endometriosis suggest systemically aberrant functionality of the myeloid system opening new venues for the study of biomarkers and therapies for endometriosis.


Endometriosis , Case-Control Studies , Endometriosis/metabolism , Endometrium/metabolism , Endometrium/pathology , Female , Humans , Immunophenotyping , Inflammation/metabolism
20.
J Immunol ; 208(7): 1790-1801, 2022 04 01.
Article En | MEDLINE | ID: mdl-35296537

T cells residing in mucosal tissues play important roles in homeostasis and defense against microbial pathogens. The gut and female reproductive tract (FRT) are both tolerogenic environments, but they differ in the kinds of foreign Ags they need to tolerate. How these different environments influence the properties of their T cells is poorly understood, but important for understanding women's health. We recruited antiretroviral therapy-suppressed women living with HIV who donated, within one visit, blood and tissue samples from the ileum, colon, rectosigmoid, endometrium, endocervix, and ectocervix. With these samples, we conducted 36-parameter cytometry by time of flight phenotyping of T cells. Although gut and FRT T cells shared features discriminating them from their blood counterparts, they also harbored features distinguishing them from one another. These included increased proportions of CD69+ T resident memory cells of the T effector memory phenotype, as well as preferential coexpression of CD69 and CD103, on the gut-derived cells. In contrast, CD69+CD103+ T resident memory CD8+ T cells from FRT, but not those from gut, preferentially expressed PD1. We further determined that a recently described population of CXCR4+ T inflammatory mucosal cells differentially expressed multiple other chemokine receptors relative to their blood counterparts. Our findings suggest that T cells resident in different tolerogenic mucosal sites take on distinct properties.


CD8-Positive T-Lymphocytes , HIV Infections , Anti-Retroviral Agents/therapeutic use , Female , Genitalia , HIV Infections/drug therapy , Humans , Lymphocyte Count
...